
Extracted from:

iPhone SDK Development
Building iPhone Applications

This PDF file contains pages extracted from iPhone SDK Development, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

DELETING ROWS 49

3.9 Deleting rows

Deleting rows from your table views is so easy that you basically get it

for free. You just add a button to your navigation bar to put your list in

edit mode and then make the UITableViewDataSourcetableView:commitEditingStyle:forRowAtIndexPath:

handle a delete request. This method handles both insertions and dele-

tions, determined by the edit style passed in. For now we only care

about deletion though since we don’t yet have an interface for adding

to the list.

To activate this method we need to be able to put our table view in

edit mode. It turns out this has been made really easy for us (surprise,

surprise). Check out the commented out implementation of viewDidLoad

that XCode generated for us:

Download TableViews/BasketballTeams/Classes/RootViewController.m

- (void)viewDidLoad {

// Add the following line if you want the list to be editable

// self.navigationItem.leftBarButtonItem = self.editButtonItem;

}

Just uncomment that line :-). It automatically adds a button labeled

“Edit” on the left side of our navigation bar. Build & Go and then press

the Edit button. Our table view in edit mode will look like Figure 3.6,

on the following page. Pretty awesome don’t you think? The red sys-

tem minus buttons appearing to the left of each row and the Edit but-

ton’s label changing to “Done” is all taken care of for you automati-

cally. If you press one of the red minus signs a Delete button will even

appear over on the other side of the row. Once you press that our table-

View:commitEditingStyle:forRowAtIndexPath: will actually be called. So all

we have to do is implement a couple lines in that.

If you search for tableView:commitEditingStyle:forRowAtIndexPath: in RootView-

Controller.m you’ll find that, as usual, XCode has provided us with a

commented out sample implementation. It turns out, as usual, that’s

it’s pretty close to what we want. For now ignore the second conditional

in the method as that has to do with inserting a new row. Take a look

at the UITableViewCellEditingStyleDelete condition.

Download TableViews/BasketballTeams/Classes/RootViewController.m

- (void)tableView:(UITableView *)tableView

commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath {

if (editingStyle == UITableViewCellEditingStyleDelete) {

[tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/BasketballTeams/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/TableViews/BasketballTeams/Classes/RootViewController.m
http://www.pragprog.com/titles/amiphd

DELETING ROWS 50

Figure 3.6: Table view in edit mode

withRowAnimation:YES];

[teams removeObjectAtIndex:indexPath.row];

}

We need to do three things when a row is deleted, and the sample code

already does one of them: We need to delete the row from table view

by using UITableView’s deleteRowsAtIndexPaths:withRowAnimation: method,

then we need to actually remove that item from our data, in this case

our teams array. Since we’re passed in the index path, we just have to

add a call to removeObjectAtIndex: to our teams array. Lastly, we need

to wrap the code that updates the table view in calls to its beginUpdates

and endUpdates methods so that it knows changes have been made and

can adjust its layout accordingly.

Download TableViews/BasketballTeams/Classes/RootViewController.m

- (void)tableView:(UITableView *)tableView

commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath {

[tableView beginUpdates];

if (editingStyle == UITableViewCellEditingStyleDelete) {

[tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]

withRowAnimation:YES];

[teams removeObjectAtIndex:indexPath.row];

}

[tableView endUpdates];

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/BasketballTeams/Classes/RootViewController.m
http://www.pragprog.com/titles/amiphd

INSERTING ROWS 51

}

3.10 Inserting rows

Our basketball team table view is coming along but it only has a fraction

of the teams we want to follow. What about the Edmonton Egrets and

the Fresno Ferrets? We’ll need to implement a data entry interface to

get all these other teams into our table view.

So far we’ve been living and working inside of the RootViewController that

XCode provided us. It’s time to branch out. We’ll need another view and

view controller to display the interface for adding a new team. To trigger

this chain of events we’ll need another button in our navigation bar to

go along with the Edit button. This one will be an Add button that

appears on the right hand side of the navigation bar.

Back in Section 3.9, Deleting rows, on page 49 when we needed an

edit button and the thoughtful engineers at Apple came to the rescue

by providing us will an already implemented UIBarButtonItem object via

the built in editButtonItem method. There’s no built in corresponding

addButtonItem but the good news is that it’s easy enough to implement.

To mimick the API already provided to us with the editButtonItem we’ll

go setup a addButtonItem instance variable plus a property over in our

RootViewController.h header file.

Download TableViews/BasketballTeams/Classes/RootViewController.h

@interface RootViewController : UITableViewController {

NSMutableArray *teams;

UIBarButtonItem *addButtonItem;

}

@property (nonatomic, retain) NSMutableArray *teams;

@property (nonatomic, retain) UIBarButtonItem *addButtonItem;

@end

Once we’ve synthesized the declared property and made sure to clean

up after ourselves in the dealloc method by releasing the addButtonItem

we can initialize our button in the initWithCoder: method. For this we’ll

use UIBarButtonItem’s initWithBarButtonSystemItem:target:action: initializer method.

You can stick the following code after the line where the teams property

is set:

Download TableViews/BasketballTeams/Classes/RootViewController.m

self.addButtonItem = [[UIBarButtonItem alloc]

initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/BasketballTeams/Classes/RootViewController.h
http://media.pragprog.com/titles/amiphd/code/TableViews/BasketballTeams/Classes/RootViewController.m
http://www.pragprog.com/titles/amiphd

INSERTING ROWS 52

target:self

action:@selector(addButtonWasPressed)];

It turns out that UIBarButtonItem ships with many partially configured

system buttons 1. The add button is here and has a plus sign as its

label. It goes by the name UIBarButtonSystemItemAdd so that’s what we

passed as the argument. Next we’re just saying that the current class

will implement the method that the button press invokes and that the

method, or “action” in target/action parlance, will be the yet-to-be-

implemented addButtonWasPressed.

Now that we have the button stored in our addButtonItem property, let’s

set the rightBarButtonItem in viewDidLoad right after we assign the leftBar-

ButtonItem.

Download TableViews/BasketballTeams/Classes/RootViewController.m

- (void)viewDidLoad {

self.navigationItem.leftBarButtonItem = self.editButtonItem;

self.navigationItem.rightBarButtonItem = self.addButtonItem;

}

Our button has been added but we haven’t yet implemented the addBut-

tonWasPressed method yet. Let’s quickly stub out a simple implementa-

tion so we can test our work. It’ll just log to the console when the button

is pressed so we know we’ve hooked everything up correctly. Declare

addButtonWasPressed in RootViewController.h.

Download TableViews/BasketballTeams/Classes/RootViewController.h

- (void)addButtonWasPressed;

And over in the implementation file’s addButtonWasPressed we add the

call to NSLog().

- (void)addButtonWasPressed {

NSLog(@"Add button pressed");

}

With that done, we can now Build & Go. If we look at XCode’s console

(Run->Console) while we press the add button we’ll see the message

logged as in Figure 3.7, on the following page.

1. To see the full list of buttons look up UIBarButtonSystemItem in XCode’s documentation

browser. These buttons are automatically localized also!

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/amiphd/code/TableViews/BasketballTeams/Classes/RootViewController.m
http://media.pragprog.com/titles/amiphd/code/TableViews/BasketballTeams/Classes/RootViewController.h
http://www.pragprog.com/titles/amiphd

SLIDING IN A VIEW FOR ADDING DATA 53

Figure 3.7: Logging add button presses

3.11 Sliding in a view for adding data

Alright, now we’re ready to design the interface that’s going to let us

enter team names to add. In this scenario, a common pattern for data

entry is to have a view slide in overtop of our list when the add button

is pressed. That view will contain a text field for adding the team name.

Once we’ve entered the name and press save, the view is dismissed and

we are returned to an updated list of teams. The view’s interface will be

really simple: just a single text field.

In Interface Builder let’s create a new interface by selecting File->New

from the menu (or Command - N). Choose the View template. When our

empty view pops up let’s start off by saving it immediately into our

project. Press Command - S and when prompted we’ll name our inter-

face file AddTeamViewController and save it to the top level of our XCode

project directory. XCode will ask you if we want to add it to the project.

We do. Make sure you check the box next to the project name. The .nib

will now appear in the Groups & Files section of you XCode sidebar.

Drag and drop it into the Resources group (where our other .nibs are.)

We need a text input field in our view to type in the title of the team we

want to add. For that we need a UITextField. In Interface Builder’s Library

palatte, type “text” in the search field. When the text field appears

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/amiphd

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
iPhone SDK Development’s Home Page

http://pragprog.com/titles/amiphd

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/amiphd.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/amiphd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/amiphd
www.pragprog.com/catalog

	Table Views
	Deleting rows
	Inserting rows
	Sliding in a view for adding data

